


Contents

Properties
Events

Functions



Events

Changed
Resized

Click
DblClick

DragDrop
DragOver
LinkClose
LinkError
LinkNotify
LinkOpen

MouseDown
MouseMove

MouseUp



Properties

BarCodeType
Checksum
Rotation

Text
NarrowBarWidth

Ratio
ChecksumString



Functions

BarCodePrint
BarCodeGetLastErrorCode
BarCodeGetLastErrorString

BarCodeGetLastErrorStringC



Changed

This event is fired when the text property is changed.



Resized

This event is fired when the size of the barcode is changed. BarCode/VBX will
automatically resize the conatiner in order to display the entire barcode. This
event can be useful if you need to reposition other objects on your form 
based on the size of the barcode.



Click

This event is fired when the user clicks the left mouse button. This is a 
standard event, see the Visual Basic users manual for more information.



DblClick

This event is fired when the user double clicks the left mouse button. This is 
a standard event, see the Visual Basic users manual for more information.



DragDrop

This event is fired when the control is the target of a drop operation. This is a
standard event, see the Visual Basic users manual for more information.



DragOver

This event is fired when the control is the target of a drop operation. This is a
standard event, see the Visual Basic users manual for more information.



LinkClose

This event is fired when a DDE conversation is terminated. This is a standard 
event, see the Visual Basic users manual for more information.



LinkOpen

This event is fired when a DDE conversation is initiated. This is a standard 
event, see the Visual Basic users manual for more information.



LinkError

This event is fired when a DDE error occurs. This is a standard event, see the
Visual Basic users manual for more information.



LinkNotify

This event is fired when a DDE conversation has been initiated and the data 
in the server has changed. This is a standard event, see the Visual Basic 
users manual for more information.



MouseDown

Fired when a mouse button is pressed. The mouse is captured as a result of 
this event. This is a standard event, see the Visual Basic users manual for 
more information.



MouseMove

Fired when mouse movement occurs. This is a standard event, see the Visual
Basic users manual for more information.



MouseUp

Fired when a mouse button is released. The mouse capture is released as a 
result of this event. This is a standard event, see the Visual Basic users 
manual for more information.



BarCodeType Property
Code 3 of 9
Extended Code 3 of 9
Interleaved 2 of 5
Code 93
Extended Code 93
UPCA
UPCE 10 digit
UPCE0 6 digit
UPCE1 6 digit
EAN 13
EAN 8
Code 128 Auto
Code 128 A
Code 128 B
Code 128 C
Codabar
MSI Plessey
UCC-128
POSTNET (Zip + 4 PostalCode)



Checksum Property
Checksums can be optionally added to some barcodes. See the description 
on the particular bar code type for more information.



Rotation Property

The bar code can be rotated by setting this property to the proper value. The
following shows the different orientations:



Text Property

The text property allows you to set the text that will be used to generate the 
bar code itself. If you are in design mode, changing this property will cause 
the BarCode/VBX to draw the barcode, if the text entered is valid for the bar 
code type that is currently selected.



Narrow Bar Width Property

This property controls the width of the narrow bars, in dots. BarCode/VBX 
defaults to 2 dots, which means that the narrow bars in each bar code will be
two dots wide. Use this property to change the width of the narrow bars. 
Valid ranges are from 1 thru 6.



Ratio

The ratio of the wide bars to narrow bars can be controlled using this 
property. BarCode/VBX defaults to a 3:1 ratio. Valid selections for this 
property are:

0 =        3:1
1 = 2.5:1
2 =        2:1



ChecksumString

This property is a string that contains the value of the checksum character. 
This property is read-only at run time and not available at design time.



Code3 of 9

This bar code is an alphanumeric bar code allowing uppercase letters and 
numbers. BarCode/VBX will convert any lower case letters into upper case 
before printing the bar code. Each character consists of nine elements. 3 of 
the nine elements are wide, hence the name '3 of 9'.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Extended 3 of 9

Extended 3 of nine is similar to Code 3 of 9 except that it allows the full 128 
ASCII character set to be encoded by printing two bar code characters for 
each text character.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Interleaved 2 of 5

This is strictly a numeric bar code. Each encoded character is made up of 
five elements, two are wide and three are narrow. The number of characters 
to be printed must be an even number. If the number of characters to be 
printed is odd a zero will be appended to the beginning of the code.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Code 93

Code 93 is an alpha-numeric bar code allowing upper case letters and 
numbers. BarCode/VBX will convert lower case letters to upper case before 
encoding them.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Extended Code 93

Extended Code 93 is similar to Code 93 except that it allows the full 128 
character ASCII character set to be encoded.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



UPCA

UPC (Universal Product Code) version A is used to encode an 11 digit 
number. The first digit is the system number and the rest are data 
characters. Both 2 and 5 digit supplementals are also supported.

The value of the checksum property is not used.



UPCE 10 digit

UPCE is a zero suppressed version of the UPCA barcode. This version allows 
10 digits to be encoded. The first digit must be zero. Both 2 and 5 digit 
supplementals are also supported.

The value of the checksum property is not used.



UPCE0 6 digit

UPCE is a zero suppressed version of the UPCA barcode. This version allows 6
digits to be encoded. The first digit must be zero. Both 2 and 5 digit 
supplementals are also supported.

The value of the checksum property is not used.



UPCE1 6 digit

UPCE is a zero suppressed version of the UPCA barcode. This version allows 6
digits to be encoded. The first digit must be zero. Both 2 and 5 digit 
supplementals are also supported.

The value of the checksum property is not used.



EAN 13

EAN barcodes are used when the country origin needs to be known. There 
are 13 digits in EAN 13 where the first two characters are used to define the 
country of origin,. the next ten are data, followed by the checksum. Both 2 
and 5 digit supplementals are also supported.

The value of the checksum property is not used.



EAN 8

EAN barcodes are used when the country origin needs to be known. There 
are 8 digits in EAN 8 where the first two characters are used to define the 
country of origin,. the next 5 are data, followed by the checksum. Both 2 and
5 digit supplementals are also supported.

The value of the checksum property is not used.



Code 128 Auto

Code 128 is a variable length bar code that is capable of encoding the entire 
128 character ASCII character set. Code 128 allow three subsets, A, B and C. 
This version, 'Code 128 Auto', will automatically select the subset that will 
produce the smallest bar code.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Code 128 A

Code 128 is a variable length bar code that is capable of encoding the entire 
128 character ASCII character set. Code 128 allow three subsets, A, B and C. 
This subset (A) allows all standard upper case alpha-numeric keyboard 
characters plus control characters.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Code 128 B

Code 128 is a variable length bar code that is capable of encoding the entire 
128 character ASCII character set. Code 128 allow three subsets, A, B and C. 
This subset (B) allows all standard upper case alpha-numeric keyboard 
characters and lower case alpha characters.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Code 128 C

Code 128 is a variable length bar code that is capable of encoding the entire 
128 character ASCII character set. Code 128 allow three subsets, A, B and C. 
This subset (C) includes a set of 100 digit pairs from 00 to 99 inclusive. This 
allows double density numeric digits, two digits per bar coded character.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



Codabar

Codabar is a variable length barcode that can encode 16 data characters 
including 0-9, plus the symbols - $ ; / . +. Codabar is used primarily for 
numeric data.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



MSI Plessey

This barcode is a variable length barcode that can encode up to 15 numeric 
digits. Checksum generation is dependent on the value of the checksum 
parameter. The following table indicates the value of the checksum property 
and the type of checksum created.

0 = one modulus 10 checksum
1 = two modulus 10 checksums
2 = one modulus 11 checksum/one modulus 10 checksum



UCC-128

This bar code is a specially defined subset of Code 128 that is used mostly 
on shipping containers. It is numeric only having a fixed length of 19 digits.

Set the checksum property to a non-zero value to add a checksum to the 
barcode.



POSTNET (Zip + 4 Postal Code)

The POSTNET barcode is used on envelopes and postcards that are sent 
through the U.S. Postal Service. This barcode is placed in the lower right 
hand corner of the envelope.

The Checksum, Rotation, and NarrowBarWidth properties have no effect on 
this bar code.



BarCodePrint Function

This function allows you to print a bar code on a device context that you 
have created before calling this function. Simply obtain a device context for 
the device that you wish to print on and fill in the members of the 
BARCODEPRINTDATA structure. The return value of this function is a boolean 
value that indicates if the function was successful. If the return value is 
'False', the function failed. Use the BarCodeGetLastErrorCode or the 
BarCodeGetLastErrorString functions to retrieve the last error.

This function is declared in the 'BARCODE.BAS' file as:
Declare Function    Lib "BARCODE.VBX" (lpBarCodeData As BARCODEPRINTDATA) As Integer



BARCODEPRINTDATA Structure

In Visual Basic this structure is defined as:

Type BARCODEPRINTDATA
BarCodeType As Integer
Checksum As Integer
Text As String * 30
Rotation As Integer
NarrowBarWidth As Integer
Ratio As Integer
hDC As Integer
x As Integer
y As Integer
Height As Integer

End Type

In Visual C++ the structure is as follows:

typedef struct tagPrintBarCode {
int BarCodeType;
int Checksum;
Byte Text[30];
int Rotation;
int NarrowBarWidth;
int Ratio;
int hDCPrinter;
int x;
int y;
int Height;

} *LPBARCODEDATA;



BarCodeGetLastErrorCode Function

This function allows you to retrieve the last error code. This function can be 
used in Visual Basic or Visual C++.

In Visual Basic this function is defined as:
Declare Function GetLastErrorCode Lib "BARCODE.VBX" () As Integer

int BarCodeGetLastErrorCode(void);

This function returns the last error code.
In Visual C++ this function can be called by using the 'Load Library', 
'GetProcAddress', and 'FreeLibrary' functions. The following is an example:

HINSTANCE hVBXInst;
int TheLastErrorCode;
int (FAR PASCAL *GetErrorCode) (void) = NULL;

hVBXInst = LoadLibrary("BARCODE.VBX");
GetErrorCode = (int (__far __pascal *)(void))GetProcAddress(hVBXInst,"BarCodeGetLastErrorCode");
if(GetErrorCode != NULL)

TheLastErrorCode = (*GetErrorCode)();
FreeLibrary(hVBXInst);      



BarCodeGetLastErrorString Function

This function will return a string that describes the last error. This function 
must not be used in Visual C++ because this function returns a Visual Basic 
String. See the 'BarCodeGetLastErrorStringC' function.
Declare Function GetLastErrorString Lib "BARCODE.VBX" () As String



BarCodeGetLastErrorStringC Function

LPSTR BarCodeGetLastErrorStringC(LPSTR Buffer, int BufferLength);

LPSTR Buffer; /* pointer to buffer that will hold string */
int BufferLength; /* length of buffer */

This function retrieves the last error string into a buffer. In Visual C++ this 
function can be called by using the 'Load Library', 'GetProcAddress', and 
'FreeLibrary' functions. The following is an example:

HINSTANCE hVBXInst;
char Str[81] = "";
LPSTR (FAR PASCAL *GetErrorStr) (LPSTR, int) = NULL;

GetErrorStr = (char __far *(__far __pascal *)(LPSTR, 
int))GetProcAddress(hVBXInst,"BarCodeGetLastErrorStringC");

if(GetLastErrorString != NULL)
(*GetErrorStr)((LPSTR)Str, 81);

FreeLibrary(hVBXInst);      




